Název: Finding direction of intersection curve in critical cases of surface-surface intersection Autoři: Oh, Min-jaeHur, SeokKim, Tae-wan Citace zdrojového dokumentu: WSCG ’2007: Posters proceedings: The 15th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2007 in co-operation with EUROGRAPHICS: University of West Bohemia, Plzen, Czech Republic: January 29 - February 1, 2007, p. 53-56. Datum vydání: 2007 Nakladatel: Václav Skala – UNION Agency Typ dokumentu: konferenční příspěvekconferenceObject URI: http://wscg.zcu.cz/wscg2007/Papers_2007/Poster/!WSCG2007_Poster_Proceedings_Final.ziphttp://hdl.handle.net/11025/855 ISBN: 978-80-86943-99-2 Klíčová slova: průnik povrchů;topologie;tangenciální průnik;pertuberační metoda Klíčová slova v dalším jazyce: surfaces intersection;topology;tangential intersection;perturbation method Abstrakt: Determining the topology of intersection curves is one of the important issues of surface-surface intersection problem used in Computer Aided Geometric Design and Computer Graphics. To compute the intersection curves, we first need to determine the topology of the curves. Thomas A. Grandine[Gr97] presented an algorithm to determine topology using partial derivatives of surface intersection equations. When the two surfaces meet tangentially, the differential values of the parameters of the surfaces are not determined in the intersection equations. These cases are called critical cases. In [Ye99] a method of finding the values of the differentials is presented for the case of the contact of order 1. We present general methods for the case of the contact of higher order ≥ 1 using perturbation method. With these results, we can decide starting or ending of the critical boundary point. Práva: © Václav Skala – UNION Agency Vyskytuje se v kolekcích: WSCG ’2007: Posters proceedings

Soubory připojené k záznamu:
Soubor Popis VelikostFormát
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: `http://hdl.handle.net/11025/855`