Title: Recommending news articles using rule-based classifier
Authors: Golian, Christián
Kuchař, Jaroslav
Citation: STEINBERGER, Josef ed.; ZÍMA, Martin ed.; FIALA, Dalibor ed.; DOSTAL, Martin ed.; NYKL, Michal ed. Data a znalosti 2017: sborník konference, Plzeň, Hotel Angelo 5. - 6. října 2017. 1. vyd. Plzeň: Západočeská univerzita v Plzni, 2017, s. 51-55. ISBN 978-80-261-0720-0.
Issue Date: 2017
Publisher: Západočeská univerzita v Plzni
Document type: konferenční příspěvek
URI: https://www.zcu.cz/export/sites/zcu/pracoviste/vyd/online/DataAZnalosti2017.pdf
ISBN: 978-80-261-0720-0
Keywords: novinové doporučení;pravidla přidružení;CLEF NewsREEL
Keywords in different language: news recommender;association rules;CLEF NewsREEL
Abstract in different language: In this paper we summarize our experiments with a rule-based classi-fier as a recommender within CLEF NewsREEL 2017 challenge. Systems that recommend news articles are suitable to solve information overflow in digital editions of newspapers, when users have problems choosing what they want to read. They face challenges unknown to the systems recommending books or movies such as a frequency of producing the new content. This paper deals with an approach based on association rules acting as a classifier. In our approach we experimented with settings that allow reducing the amount of rules used for the classification and increasing the performance that is crucial for real recommen-dations.
Rights: © Západočeská univerzita v Plzni
Appears in Collections:Data a znalosti 2017
Data a znalosti 2017

Files in This Item:
File Description SizeFormat 
Golian.pdfPlný text374,33 kBAdobe PDFView/Open

Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/26335

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.