Název: Detekce slov s nepravidelnou výslovností v českém textu
Další názvy: Detection of words with irregular pronunciation in Czech text
Autoři: Lehečka, Jan
Vedoucí práce/školitel: Hoidekr, Jan
Oponent: Švec, Jan
Datum vydání: 2012
Nakladatel: Západočeská univerzita v Plzni
Typ dokumentu: diplomová práce
URI: http://hdl.handle.net/11025/2648
Klíčová slova: nepravidelná výslovnost;fonetická transkripce;automatická detekce jazyka;jazykový model;klasifikace;lineární systém rovnic;klasifikátor podle k-nejbližšího souseda;neuronové sítě
Klíčová slova v dalším jazyce: irregular pronunciation;phonetic transcription;automatic language detection;language model;classification;linear system of equations;k-nearest neighbor classifier;neural networks
Abstrakt: Cílem této diplomové práce je navrhnout a implementovat systém, který automaticky hledá a označuje slova s nepravidelnou výslovností v českých textech. Nepravidelná výslovnost slova je taková výslovnost, která nelze odvodit pomocí pravidel české fonetické transkripce. Pro řešení je použit klasifikátor, který roztřídí všechna slova do dvou tříd, a to do třídy slov s pravidelnou výslovností a třídy slov s nepravidelnou výslovností. Natrénovaný klasifikátor zohledňuje i slovník výjimek zabudovaný v existujícím fonetickém transkriberu. Výsledky této práce ukazují, že nejlepší klasifikace slov je dosaženo při použití klasifikátoru podle k-nejbližšího souseda. Dalšími zkoumanými klasifikátory v této práci byly neuronové sítě, lineární SVC a rozhodovací stromy.
Abstrakt v dalším jazyce: The goal of this work is proposal and implementation of a system, which is able to find and mark words with irregular pronunciation in Czech texts. Irregular pronunciation of word is such pronunciation, that can not be derived by using rules of Czech phonetic transcription. To solve the problem, a classifier separating words into two classes is used. In the first target class, there are words with regular pronunciation, and the second class contains only words with irregular pronunciation. Trained classifier takes also a vocabulary of exceptions built in existing phonetic transcriber into consideration. The result of this work shows that the best classification is achieved when using k-nearest neighbor classifier. Other investigated classifiers in this work were neural networks, linear SVC and decision trees.
Práva: Plný text práce je přístupný bez omezení
Vyskytuje se v kolekcích:Diplomové práce (KKY) / Theses (DCY)

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
dp_lehecka.pdfPlný text práce1,3 MBAdobe PDFZobrazit/otevřít
lehecka-v.pdfPosudek vedoucího práce1,75 MBAdobe PDFZobrazit/otevřít
lehecka-o.pdfPosudek oponenta práce1,82 MBAdobe PDFZobrazit/otevřít
lehecka-p.pdfPrůběh obhajoby práce1,48 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/2648

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.