Title: Branching pieces of rational skins from polynomial MOS patches
Authors: Lávička, Miroslav
Bizzarri, Michal
Citation: LÁVIČKA, M., BIZZARRI, M. Branching pieces of rational skins from polynomial MOS patches. Proceedings of the 17th International Conference on Mathematical Methods in Science and Engineering. Costa Ballena, Rota, Cádiz (Spain): CMMSE, 2017. s. 1237-1245. ISBN 978-84-617-8694-7.
Issue Date: 2017
Publisher: CMMSE
Document type: konferenční příspěvek
URI: http://hdl.handle.net/11025/29272
ISBN: 978-84-617-8694-7
Keywords: proměny středového povrchu;MOS povrchy;racionální obálky;stahování
Keywords in different language: Medial surface transforms;MOS surfaces;rational envelopes;skinning
Abstract in different language: In this paper we will investigate one certain application of polynomial 2-surfaces possessing the polynomial area element in the Minkowski space $\R^{3,1}$, where they coincide with the so called MOS surfaces (i.e., medial surface transforms with rational domain boundaries). We formulate an efficient algorithm for Hermite interpolation by MOS surfaces and apply the developed method to the construction of branching pieces which occur during the operation of rational skinning. We recall that when branched skins of systems of spheres are constructed then the envelopes of suitable two-parametric systems of spheres must be considered. MOS surfaces are presented as especially suitable candidates for modelling these shapes because they provide not only rational envelopes but also all offsets of these envelopes are rational
Rights: Plný text není přístupný.
Appears in Collections:OBD
Konferenční příspěvky / Conference Papers (KMA)

Files in This Item:
File SizeFormat 
lavicka_cmmse.pdf2,27 MBAdobe PDFView/Open    Request a copy

Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/29272

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.