Title: Regularita zobrazení
Other Titles: Regularity of mappings
Authors: Roubal, Tomáš
Issue Date: 2018
Publisher: Západočeská univerzita v Plzni
Document type: rigorózní práce
URI: http://hdl.handle.net/11025/33073
Keywords: metrická regularita;otevřenost zobrazení;kritéria regularity;newtonova metoda;kantorovichova věta
Keywords in different language: metric regularity;openness of mappings;criteria of regularity;newton method;kantorovich theorem
Abstract: V této práci jsme si vzali za úkol shrnout základní teorii o regularitě zobrazení a metodách Newtonově typu pro řešení (zobecněnýc) rovnic. Kapitola 1 je rozdělena do dvou podkapitol. První podkapitola obsahuje motivaci pro studium regularity zobrazení skrze řešitelnost rovnic/inkluzí při malé perturbaci pravé strany. Dále jsme ukázali, že nutnou podmínku pro (lokální) minimum/maximum lze odvodit negací postačujících podmínek regularity. V druhé podkapitole se definujeme metrickou regularitu, metrickou subregularitu a metrickou semiregularitu. Také je zde uvedeno několik ekvivalentních vlastností. Kapitola 2 je rozdělena do čtyř podkapitol. První kapitola obsahuje stručný historický vývoj kritérií metrické regularity, metrické subregularity a semiregularity. Další kapitoly obsahují kritéria každé z těchto vlastnosti. Kapitola 3 je zaměřena na metody Newtonova typu a je rozdělena do pěti podkapitol. První podkapitola obsahuje stručný historický vývoj Newtonovy metody. Druhá podkapitola je zaměrena na věty o lokální konvergenci a třetí obsahuje věty typu Dennis-Moré. Ve čtvrté kapitole najdeme věty o semilokální konvergenci, které jsou zobecnění Bartleho věty. Všechny tyto výsledky jsou založeny na vlastnostech regularity zobrazení. V poslední podkapitole jsou metody Newtonova typu aplikovány na problém nehladkých nerovnic.
Abstract in different language: In this thesis we set ourselves the task to present regularity properties of mappings, basic results for them, and Newton-type methods for solving (generalized) equations. The Chapter 1 is divided into two sections. In the rst section, we motivated our considerations by a solvability of equations/inclusions under small perturbations of the right hand side. Moreover, we showed that necessary conditions for (local) minimum/maximum can be derived by negating su cient conditions of regularity. In the second section, we de ned metric regularity, metric subregularity, and metric semiregularity. Several equivalent properties were presented. The Chapter 2 is divided into four sections. The rst section contains a brief historical development of criteria of metric regularity, metric subregularity, and metric semiregularity. In the remaining sections, criteria for each property are given. The Chapter 3 is focused on Newton-type methods and is divided into ve sections. In the rst section, we presented a brief historical development of the Newton method. The second section is focused on local convergence theorems and the third one contains Dennis-Mor e theorems. The fourth section contains semilocal convergence theorems, which generalize Bartle theorem. All these results are based on various combinations of regularity properties. In the last section Newton-type methods are applied to non-smooth inequalities.
Rights: Plný text práce je přístupný bez omezení
Appears in Collections:Rigorózní práce / Rigorous theses (KMA)

Files in This Item:
File Description SizeFormat 
RoubalRig.pdfPlný text práce433,77 kBAdobe PDFView/Open
posudek-rp-roubal.pdfPosudek oponenta práce534,52 kBAdobe PDFView/Open
zapis-srz-roubal.pdfPrůběh obhajoby práce877,42 kBAdobe PDFView/Open


Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/33073

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.